JOM 23849

Ligand variation in alkylidene complexes of the type $Mo(CHR)(NR')(OR'')_2$ *

John H. Oskam, Harold H. Fox, Kimo B. Yap, David H. McConville, Richard O'Dell, Bradley J. Lichtenstein and Richard R. Schrock

Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)

(Received April 16, 1993)

Abstract

A variety of complexes of the type $Mo(NR)_2Cl_2L_2$ (R = 4-Br-2,6-ⁱPr_2-C₆H_2, 4-CN-2,6-ⁱPr_2-C₆H_2, 3,5-Me_2-C₆H_3, 2-ⁱPr-C₆H_4, 2-Ph-C₆H_4, and 1-adamantyl; L = 1/2 DME or pyridine) have been synthesized by treating $[NH_4]_2[Mo_2O_7]$ with four equivalents of RNH₂ in the presence of Me₃SiCl and Et₃N. They are readily alkylated by Grignard reagents to give complexes of the type $Mo(NR)_2(CH_2R')_2$ (R = 4-Br-2,6-ⁱPr_2-C₆H_2, 4-CN-2,6-ⁱPr_2-C_6H_2, 2,6-Me_2-C_6H_3, 3,5-Me_2-C_6H_3, 2-ⁱBu-C_6H_4, 2-ⁱPr-C_6H_4, 2-CF_3-C_6H_4, 2-CF_3-C_6H_4, 1-adamantyl, $R' = ^i$ Bu or PhMe₂C) from which alkylidene complexes of the type $Mo(NR)(CHR')(OTf)_2(DME)$ are formed upon addition of triflic acid. Addition of various alkoxides to the triflate complexes yields four-coordinate complexes of the type $Mo(NR)(CHR')(OR'')_2$ (combinations include R = 2,6-ⁱPr_2-C₆H₃, 4-Br-2,6-ⁱPr_2-C₆H₃, 3,5-Me_2-C₆H₄, 2-Ph-C₆H₄, and 1-adamantyl, $R' = ^i$ Bu or $PhMe_2C_3$ (combinations include R = 2,6-ⁱPr_2-C₆H₃, 4-Br-2,6-ⁱPr_2-C₆H₃, 4-Br-2,6-ⁱPr_2-C₆H₃, 3,5-Me_2-C₆H₃, 4-Br-2,6-ⁱPr_2-C₆H₃, 3,5-Me_2-C₆H₃, 3,5-Me_2-C₆H₃, 3,5-Me_2-C₆H₃, 3,5-Me_2-C₆H₃, 3,5-Me_2-C₆H₄, 2-ⁱPr-C₆H₄, 2-ⁱPr-C₆H₄, 2-Ph-C₆H₄, and 1-adamantyl; OR'' = OCMe₃, OCEt₃, 0-1-adamantyl, OCHMe₂, OCMe₂(CF₃), OCMe(CF₃)₂, OC(CF₃)₃, and OC(CF₃)₂CF₂CF₂CF₃).

1. Introduction

Complexes of the types $M(N-2,6^{-i}Pr_2-C_6H_3)(CHR)$ $(OR'')_2$ (M = Mo [1-3], W [4,5]), W(N-2,6-Me₂- C_6H_3 (CHR)(OR")₂ [5], and Re(CR)(CHR)(OR")₂ [6,7] ($\mathbf{R} = CMe_3$ or CMe_2Ph and $\mathbf{R}'' = CMe_3$, $CMe_2(CF_3)$, $CMe(CF_3)_2$), have been shown to be effective catalysts for the metathesis of ordinary olefins (Mo [1,3], W [4,5,8], Re [6,9]) and for the ring-opening metathesis polymerization of a variety of bicyclic monomers [10-14]. Variations of the tungsten catalysts (including base adducts) have been synthesized and employed in ROMP reactions [15,16] and the tungsten and molybdenum catalysts have been used in several related catalytic reactions [17-19] including the catalytic ring-closing of dienes [20,21]. In the long term, molybdenum complexes will probably be the catalysts of choice for most reactions since molybdenum is the cheapest metal of the three, molybdenum catalysts are currently the easiest to synthesize, and molybdenum catalysts appear to tolerate functionalities to a greater degree than analogous tungsten catalysts. To date most studies have employed molybdenum catalysts that contain the 2,6-diisopropylphenylimido ligand and primarily $OR'' = OCMe_3$ or $OCMe(CF_3)_2$. Such species are readily available from the "universal precursor," $M_0(N-2,6-{}^{i}Pr_2-C_6H_3)(CHR)(OSO_2CF_3)_2(DME)$ (R = CMe₃ or CMe₂Ph) [1], which can be prepared in three high yield steps from $[NH_4]_2[MO_2O_7]$. It is clear that the activity of the catalyst depends dramatically upon the electron-withdrawing ability of the alkoxides, upon whether coordinating ligands (including coordinating solvents) are present, and upon whether the alkylidene is in the syn or the anti configuration [22]. It also has been shown recently that polymers with dramatically different microstructures can be obtained if one employs catalysts that contain different monodentate alkoxides (OR") [23] or C_2 symmetric alkoxides [24].

Among the questions that have not yet been addressed are to what extent can the electronic and steric properties of the *imido* ligand be varied and how do such variants behave with respect to metathesis of ordinary olefins or ring-opening metathesis of cyclic

Correspondence to: Prof. Dr. R.R. Schrock.

^{*} Dedicated to Prof. Dr. E.O. Fischer on the occasion of his 75th birthday.

olefins? The imido ligand almost certainly is *not* simply a "spectator" ligand [25], since from both a steric and an electronic perspective it stands a good chance of being able to alter, perhaps dramatically, the reactivity of the metal center. Therefore it is important to continue to explore the synthesis and reactivity of variations of the basic catalyst system. In this paper we explore the synthesis of complexes that contain several different imido groups, and report several new alkoxide derivatives of 2,6-diisopropylphenylimido catalysts.

2. Results and discussion

Recently we reported that $[NH_4]_2[Mo_2O_7]$ is the preferred starting material for the synthesis of complexes of the type Mo(NR)₂Cl₂(DME) and demonstrated that the method works well for complexes in which $R = {}^{t}Bu$, Ph, C₆F₅, 2,6- ${}^{i}Pr_2$ -C₆H₃, 2,6-Me₂-C₆H₃, or 2- ${}^{t}Bu$ -C₆H₄ [2]. This synthetic procedure has now been extended to a number of new imido complexes of the type Mo(NR)₂Cl₂L₂ (1; eqn. (1); Table 1). A potentially important modification of this proce-(NH₄)₂Mo₂O₇ $\xrightarrow{\text{excess NEt}_3, Me_3SiCl \text{ and } L} 2 Mo(NR)_2Cl_2L_2$

$$\begin{array}{cccc} (1114)_{2}(102_{2}07) & & 4 \operatorname{RNH}_{2} \\ & & (1) \\ & & (1) \end{array}$$

L = 1/2 DME or pyridine (py)

$$R = 4-Br-2,6^{-i}Pr_2-C_6H_2; 4-CN-2,6^{-i}Pr_2-C_6H_2;$$

3,5-Me₂-C₆H₃; 2-ⁱPr-C₆H₄; 2-CF₃-C₆H₄;
2-ⁱBu-C₆H₄; 1-adamantyl

dure is the use of a solvent other than 1,2-dimethoxyethane (DME). Complexes that are only slightly soluble in DME, such as Mo(N-2-Ph-C₆H₄)₂ $Cl_2(py)_2$ (1e) and Mo(N-1-adamantyl)₂ $Cl_2(DME)$ (1f) were easily prepared in good yield in benzene or toluene in the presence of an excess of stabilizing ligand (pyridine or DME). Mo(N-4-CN-2,6-ⁱPr₂- $C_6H_2)_2Cl_2(DME)$ (1b) could not be synthesized directly in DME, perhaps because of the diminished basicity of the aniline, but could be prepared readily in acetonitrile. In that case the DME adduct was prepared by dissolving the crude product in DME and removing all salts by filtration.

The next step in the catalyst synthesis consists of alkylating 1 with a neopentyl or neophyl Grignard reagent to give 2 (eqn. (2); Table 2). Neophyl is the preferred alkyl at present because it is relatively inexpensive and because neophyl complexes are sometimes more crystalline and easier to isolate than neopentyl

$$1 + 2 \text{ R'CH}_2 \text{MgCl} \xrightarrow{\text{1HF or}}_{\text{ether}}$$

$$Mo(NR)_2(CH_2R')_2 + 2 \text{ MgCl}_2 + 2 \text{ L} \quad (2)$$
(2)

L = 1/2 DME or py

 $\mathbf{R}' = {}^{t}\mathbf{B}\mathbf{u}$ or $\mathbf{PhMe}_{2}\mathbf{C}$

complexes. The yields are typically high. In an attempt to prepare imido complexes with less steric protection than the 2,6-disubstituted or 2-substituted phenyl derivatives, we have attempted the alkylation of $Mo(NPh)_2Cl_2(DME)$ [2] under a variety of conditions, but upon isolation, an insoluble material is formed. We have succeeded in preparing a 3,5-dimethylphenylimido derivative (2e), which can be carried through the subsequent steps in the synthesis of 4-coordinate imido alkylidene complexes.

TABLE 1. Reaction conditions and yields for the synthesis of compounds of type 1

Compound	Solvent	Time (h)	Temp. (°C)	Yield (%)
$Mo(N-4-Br-2,6-{}^{i}Pr_2-C_6H_2)_2Cl_2(DME)$				
(1a)	DME	68	45	99
$Mo(N-4-CN-2,6-{}^{i}Pr_{2}-C_{6}H_{2})_{2}Cl_{2}(DME)$				
(1b)	CH ₃ CN	120	25	71
$Mo(N-3,5-Me_2-C_6H_3)_2Cl_2(DME)$				
(1c)	75% toluene/25% DME	36	25	88
$Mo(N-2-{}^{i}Pr_{2}-C_{6}H_{4})_{2}Cl_{2}(DME)$				
(1d)	DME	12	52	97
$Mo(N-2-CF_3-C_6H_4)_2Cl_2(DME)$				
(1e)	DME	12	65	74
$Mo(N-2-Ph-C_6H_4)_2Cl_2(py)_2$				
(1f)				
	95% benzene/5% pyridine	12	60	80
$Mo(N-1-adamantyl)_2Cl_2(DME)$			-	-
(1g)	85% toluene/15% DME	12	70	70

TABLE 2. Reaction conditions and yields of complexes of type 2

Compound	Solvent	Yield (%)
$\frac{Mo(N-4-CN-2,6-{}^{i}Pr_{2}-C_{6}H_{2})_{2}(CH_{2}CMe_{3})_{2}}{(2a)}$	thf	45
$\begin{array}{c} Mo(N-4-Br-2,6^{-1}Pr_2-C_6H_2)_2(CH_2CMe_2Ph)_2 \\ (2b) \end{array}$	thf	44
$\frac{\text{Mo}(\text{N-2,6-Me}_2\text{-}C_6\text{H}_3)_2(\text{CH}_2\text{CMe}_2\text{Ph})_2}{(2c)}$	ether	82
$\frac{Mo(N-2,6-Me_2-C_6H_3)_2(CH_2CMe_3)_2}{(2d)}$	ether	68
$M_0(N-3,5-Me_2-C_6H_3)_2(CH_2CMe_2Ph)_2$ (2e)	thf	66
$M_{0}(N-2-'Pr-C_{6}H_{4})_{2}(CH_{2}CMe_{2}Ph)_{2}$ (2f) (2f)	ether	66
$Mo(N-2-CF_3-C_6H_4)_2(CH_2CMe_2Ph)_2$ (2g) $M(VA_2 P_1-C_2H_2)(CH_2CMe_2Ph)_2$	thf	99
$\begin{array}{c} \operatorname{Mo}(\mathrm{N}\text{-}2\text{-}^{\circ}\mathrm{Bu}\text{-}\mathrm{C}_{6}\mathrm{H}_{4})_{2}(\mathrm{CH}_{2}\mathrm{CMe}_{2}\mathrm{Ph})_{2} \\ (2h) \\ \end{array}$	thf	98
$M_{0}(N-2-Bu-C_{6}H_{4})_{2}(CH_{2}CMe_{3})_{2}$ (2i) $M_{1}(N-2)H_{2}(CH_{2}CMe_{3})_{2}$	ether	87
$\begin{array}{c} Mo(N-2-Pn-C_{6}H_{4})_{2}(CH_{2}CMe_{2})_{2} \\ (2j) \\ M(N-1) = 0 \\ (2j) $	ether	71
$Mo(N-1-adamantyl)_2(CH_2CMe_2Ph)_2$ (2k)	ether	82

The third step in the synthesis of the "universal precursor" (3, eqn. (3), Table 3; $OTf = O_3SCF_3$) involves the addition of triflic acid to 2. This step can be

TABLE 3

Yields and selected NMR data for complexes of type 3

problematic, although problems usually can be traced 2 + 3 TfOH \xrightarrow{DME}

$$Mo(NR)(CHR')(OTf)_2(DME) + [RNH_3][OTf]$$
(3)

 $+ R'CH_3$ (3)

to the use of impure triflic acid or dimethoxyethane. α -Hydrogen abstraction proceeds cleanly in all cases except in the attempted synthesis of Mo(N-4-CN-2,6-ⁱPr₂-C₆H₂)-(CHR')(OTf)₂(DME). In this case α -hydrogen abstraction proceeds very slowly in DME and the products are unstable. In acetonitrile α -hydrogen abstraction is fast, but the product is stable only in acetonitrile and therefore cannot be isolated. It should be noted that other alkyl ligands can undergo α hydrogen abstraction. For example, we have found that α -hydrogen abstraction in Mo(N-2,6-ⁱPr₂-C₆H₃)₂(CH₂Ph)₂ proceeds cleanly to yield the corresponding benzylidene complex [3].

In general, two isomers of complexes of type 3 are found in solution. The major isomer is a symmetric species that contains a *syn* alkylidene ligand as shown in Fig. 1(a); an example of a complex with this structure has been characterized crystallographically [1]. The minor isomer has no plane of symmetry. Since the alkylidene and imido ligands are most likely *cis* to one another, the triflate ligands must be *cis*. Spectroscopic

Compound		Yield (%)	δH_{α} (ppm) ^a	δC _α (ppm) ^a	¹ J _{CH} (Hz)
$\overline{Mo(N-4-Br-2,6^{-i}Pr_2-C_6H_2)(CHCMe_2Ph)(OTf)_2(DME)}$			······		
(3a)		70	14.31	328.5	122
$M_0(N-2,6-Me_2-C_6H_3)(CHCMe_3)(OTf)_2(DME)$	(major, 85%)	82	14.07 ^b	330.2 ^b	118
(3b)	(minor)		14.80 ^b		
$M_0(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)(OTf)_2(DME)$					
(3c)		70	14.23	326.2	122
$M_0(N-3,5-Me_2-C_cH_3)(CHCMe_2Ph)(OTf)_2(DME)$	(major, 97%)	74	13.80	323.6	126
(3d)	(minor)		14.96		
Mo(N-2- ⁱ Pr-C ₄ H ₄)(CHCMe ₂ Ph)(OTf) ₂ (DME)	(major, 94%)	74	14.14	326.1	
(3e)	(minor)		15.08		
Mo(N-2-CF ₃ -C ₆ H ₄)(CHCMe ₇ Ph)(OTf) ₇ (DME)	(major, 80%)	60	14.05	325.9	
(3f)	(minor)		15.17	334.4	
Mo(N-2- ^t Bu-C ₆ H ₄)(CHCMe ₂ Ph)(OTf) ₂ (DME)	(major, 63%)	71	14.10 ^b	325.2 b	
(3g)	(minor)		14.82 ^b	332.3 ^b	
$M_0(N-2-^tBu-C_6H_4)(CHCMe_3)(OTf)_2(DME)$	(major, 85%)	67	13.99 ^b	328.8 b	
(3h)	(minor)		14.76 ^b		
$M_0(N-2-Ph-C_6H_4)(CHCMe_3)(OTf)_2(DME)$	(major, 55%)	72	13.99 °	328.9 °	
(3i)	(minor)		14.66 °	337.8 °	
Mo(N-1-adamantyl)(CHCMe ₂ Ph)(OTf) ₂ (DME)	(major, 67%)	67	14.72 ^b	327.4 ^b	128
(3j)	(minor)		13.87 ^b	318.9 ^b	121

^a In C_6D_6 unless otherwise noted. ^b In CD_2Cl_2 . ^c In $CDCl_3$.

data (¹H, ¹³C and ¹⁹F NMR) indicate that the methylene groups in the DME ligand are inequivalent, the triflate ligands are inequivalent, and in complexes con-

taining the neophylidene ligand, the neophylidene methyl groups are inequivalent. Therefore, we conclude that the geometry is one of the two structures

TABLE 4. Yields and selected NMR data (C₆D₆ unless noted) for complexes of type 4

Compound	Yield	$\delta(^{1}H_{\alpha})$	$\delta(^{13}C_{\alpha})$	¹ J _{CH}
	(%)	ppm	ppm	(Hz)
$\overline{Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)(OCEt_{3})_{2}}$				- 2 00 - 2 0
(4a)	oil	11.17	261.8	119
$Mo(N-2,6-{}^{i}Pr_2-C_6H_3)(CHCMe_2Ph)(O-1-adamantyl)_2$				
(4b)	75	11.33	262.2	119
$Mo(N-2,6-'Pr_2-C_6H_3)(CHCMe_2Ph)[OCMe_2(CMe_3)]_2$				
	65	11.29	236.4	119
$MO(N-2,0-^{2}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)(OCHMe_{2})_{2}$	72	11.24		
$M_0(N_2) = \frac{i}{2} Pr_2 - C_1 H_2 Y C H C Me_2 Ph Y O C Me_2)_2$	15	11.24		
(4e)[1]		11.34		119
$Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)[OCMe_{2}(CF_{3})]_{2}$				
(4f)	53	11.68	273.9	120
$Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)[OCMe(CF_{3})_{2}]_{2}$				
(4g) [3]		12.12	284.9	120
$MO(N-2,6-PT_2-C_6H_3)(CHCMe_2Ph)(OC(CF_3)_3]_2)_2$	70	17 07 â	209 C	100
(41) $M_0(N, 2, 6, \frac{1}{2} r_{-1}, C, H, YCHCM_{\bullet}, PhYOC(CE), CE, CE, CE)$	/8	12.87	298.0	122
(4i)	68	12.92	299.6	122
$Mo(N-4-Br-2,6-{}^{i}Pr_{2}-C_{6}H_{2})(CHCMe_{2}Ph)(OCMe(CF_{3})_{2})_{2}$	00			
(4j)	60	12.01 ^a	284.9	121
$Mo(N-2,6-Me_2-C_6H_3)(CHCMe_3)(OCMe_3)_2$				
(4k)	27 ^b	11.31	266.3	115
$Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)[OCMe(CF_3)]_2$	(D. (11.70	074 (
(4) $M_{2}(N) \ge M_{2} = C + VCHCM_{2} \times O \ge C + C + C$	68 °	11.72	2/4.0	
(4m)	26	11.43	277 9	116
$Mo(N-2.6-Me_2-C_4H_2)(CHCMe_2Ph)(OCMe_2(CF_2)_2)_2$	20	11.45	211.7	110
(4n)	30	12.18	289.5	
$Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)[OC(CF_3)_2CF_2CF_2CF_3]_2$				
(40)	60	12.86	299.2	123
$Mo(N-3,5-Me_2-C_6H_3)(CHCMe_2Ph)(OCMe(CF_3)_2)_2$.,			
(4p) Ma(N) 2 ip- C H VCHCMa ph)(OCMa(CE))	011	11.91		
$\frac{(4n)}{(4n)}$	78	11.96	283.4	121
$Mo(N-2-CF_2-C_2H_4)(CHCMe_2Ph)[OCMe(CF_2)_2]_2$	10	11.70	205.4	121
(4r)	74	11.93	284.7	
$Mo(N-2-^{t}Bu-C_{6}H_{4})(CHCMe_{2}Ph)(OCMe_{3})_{2}$				
(4s)	oil	11.05		
$Mo(N-2-^{t}Bu-C_{6}H_{4})(CHCMe_{3})(OCMe_{3})_{2}$				
(41) $(A1) = (A1) (CHCM_{2} B_{2})(A_{1} A_{2}) = (A1) (CHCM_{2} B_{2})(A_{1} A_{2}) = (A1) ($	oil	10.98	262.7	113
$MO(N-2-Bu-C_6H_4)(CHCMe_2Ph)(O-1-adamanty))_2$	40	11.06	250 4	
$M_0(N-2-^{t}Bu_{-}C_{-}H_{-})/CHCMe_{-}MO_{-}2.6-^{t}Pr_{-}C_{-}H_{-})$	40	11.00	237.4	
(4v)	oil	11.52		
$M_0(N-2-^tBu-C_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$				
(4w)	77	11.79	281.5	
$Mo(N-2-^{t}Bu-C_{6}H_{4})(CHCMe_{3})[OCMe(CF_{3})_{2}]_{2}$				110
(4x) Ma(N 2 Dh C, H, YOHCMa, NOCMa(OE))]	/3	11.71	284.3	118
(4v)	63	11 81 °	287 በ ^c	117 °
Mo(N-1-adamantyl)(CHCMe, Ph)(OCMe(CF ₄),],	55	11.01	20110	
(4z)	65	11.84 ^d	278.3 ^f	120 ^f
		13.10 °		

^a Value is reported in toluene- d_8 . ^b The high solubility of **4k** limits the yield of isolated crystalline product. ^c Value reported in CDCl₃. ^d Major (90%, syn). ^e Minor (10%, anti). ^f Value is reported in CD₂Cl₂.

Fig. 1. (a) Major isomer of 3 and (b) the two possible core structures of the minor isomer of 3.

depicted in Fig. 1(b). We are less certain about whether the minor isomer contains a syn or an anti alkylidene rotamer. In four- and and five-coordinate alkylidene complexes, the magnitude of J_{CH} can be used to assign the syn/anti orientation of the alkylidene relative to the imide [26]. However, in six-coordinate species such as Mo(CH₂)(N-2,6-ⁱPr₂-C₆H₃)[OCMe(CF₃)₂]₂(bipyridine), J_{CH} is the same for each of the methylene protons [3]. In polar solvents such as dichloromethane, the amount of the minor isomer increases relative to the major isomer, as one might expect on the basis of the likely higher dipole moment for the minor isomer.

The final step in the catalyst synthesis involves addition of an alkoxide to 3 (eqn. (4)).

$$3 + 2 \text{ MOR}'' \xrightarrow{-\text{DME}}_{-30^{\circ}\text{C}}$$

$$Mo(NR)(CHR')(OR'')_{2} + M(OTf) \quad (4)$$

$$(4)$$

$$M = \text{Li}, K$$

$$OR'' = OCE(-20.1 \text{ show following the set of th$$

OR" = OCMe₃, OCEt₃, O-1-adamantyl, OCMe₂CF₃, OCMe(CF₃)₂, OC(CF₃)₃, OC(CF₃)₂CF₂CF₂CF₃ or O(2,6-ⁱPr₂-C₆H₃)

Complexes that have been synthesized along with pertinent NMR data are listed in Table 4. The conditions for addition of the alkoxide vary little from those previously reported except that in some cases the reaction proceeds in higher yield in tetrahydrofuran than in diethyl ether. A crucial requirement for the success of this reaction is that 3 be completely free from any ammonium salt that was formed during its synthesis. It is interesting to note that imido ligands that are considerably less sterically demanding than 2,6-diisopropylphenylimido still provide enough steric protection to stabilize four-coordinate neopentylidene or neophylidene complexes. (The stability of analogs that contain relatively small alkylidene ligands is likely to be significantly lower.) For example, even complexes that contain 2-substituted phenylimido ligands can be synthesized in good yields. In some cases, the products could only be obtained as oils (4a, 4s, 4t, and 4v), most notably complexes containing OCMe₃ and OCEt₃ ligands. However, analogous adamantoxy complexes are crystalline (compare 4s with 4u). Complexes that contain tert-butyl imido ligands have been synthesized by other means but are oils [27]. In contrast, the adamantylimido complex (4z) is a crystalline species. Adamantylimido complexes are expected to offer the greatest potential contrast with phenylimido derivatives as a result of the electron-donating ability of the adamantyl group relative to the phenyl group and the roughly spherical shape of the adamantyl group.

As has been noted previously in complexes of this type, the alkylidene proton and carbon chemical shifts correlate with the electron-withdrawing ability of the alkoxide ligand [1]. This is most obvious in complexes that contain the 2,6-diisopropylphenylimido ligand (4a-4i; Table 4). (It is unlikely that 4i is actually more electron-withdrawing than 4h since a less electronegative carbon in 4h is replaced by a fluorine in 4i.) It should also be noted that *ca*. 10% of the *anti* rotamer can be observed at room temperature in the case of 4z. All other initiators exist as predominantly the *syn* rotamer at room temperature.

Some of the variations reported here, as well as others that should be readily preparable by these procedures, could help shed light on the mechanism of acyclic or cylic olefin metathesis. Some of the factors that may be important are the magnitude of the *anti/syn* equilibrium and their rates of interconversion, the relative reactivity of *anti* and *syn* rotamers, in addition to the possibility of more than one mode of attack of an olefin on the metal [22]. Future papers will be aimed toward the exploration of these issues in detail.

3. Experimental details

All experiments were performed under a nitrogen atmosphere in a Vacuum Atmospheres drybox or by standard Schlenk techniques unless otherwise specified. Pentane was washed with sulfuric/nitric acid (95/5 v/v), sodium bicarbonate, and water, stored over calcium chloride, and distilled from sodium benzophenone ketyl under nitrogen. Reagent grade diethyl ether, tetrahydrofuran, toluene, benzene, and 1,2-dimethoxy-

ethane were distilled from sodium benzophenone ketyl under nitrogen. Reagent grade dichloromethane and acetonitrile were distilled from calcium hydride under nitrogen. Reagent grade N,N-dimethylformamide was dried over molecular sieves (4 Å). Benzene- d_6 , toluene- d_8 and CD_2Cl_2 were sparged with argon and stored over molecular sieves (4 Å). CD₃CN was vacuum distilled from CaH₂. CDCl₃ was passed through a column of Al₂O₃ and stored over molecular sieves (4 Å). NMR data are listed in parts per million downfield from tetramethylsilane for proton and carbon and downfield from CFCl₃ for fluorine. Coupling constants are listed in hertz. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400 CHN analyzer. All chemicals were reagent grade and were purified by known methods [28]. Trifluoromethanesulfonic acid (triflic acid) is best used from a freshly opened ampoule. Potassium alkoxide salts were prepared by treating the alcohol with KH or KCH₂Ph [29], and lithium alkoxide salts by treating the alcohol with "BuLi. $Mo(CHCMe_2Ph)(N-2,6-{}^{i}Pr_2-C_6H_3)(OSO_2CF_3)_2(DME)$ [1], $HOC(CF_3)_2CF_2CF_2CF_3$ [30], $KOC(CF_3)_3$ [31], $Mo(N-2,6-Me_2C_6H_3)_2Cl_2(DME)$ [2] and $Mo(N-2-^{t}Bu C_6H_4$)Cl₂(DME) [2] were prepared by literature methods. The syntheses of bisimido complexes (1) reported here are adapted from the procedure used to prepare $Mo(N-2,6-{}^{i}Pr_2-C_6H_3)_2Cl_2(DME)$ [2]; conditions are listed in Table 1. The alkylation procedure used to prepare complexes 2 is analogous to that reported elsewhere [1]; solvents and yields are listed in Table 2. Complexes 3 were prepared using synthetic procedures derived from that reported earlier [1] on a 5-10 mmol scale; yields and NMR data for the alkylidene ligand are listed in Table 3. The syntheses of dialkoxide complexes 4 followed the procedure reported elsewhere [1] and were executed on a 1-3 mmol scale. Yields and alkylidene NMR data for complexes 4 are listed in Table 4. Only significant differences in procedures are noted below.

3.1. 4-Br-2,6- ${}^{i}Pr_{2}$ -C₆H₂NH₂

Bromine (35.4 g, 0.222 mol) was added via a dropping funnel to a stirred slurry of 2,6-ⁱPr₂-C₆H₃NH₃Cl (47.4 g, 0.222 mol) in 1 L of glacial acetic acid. After addition was complete the reaction mixture was stirred for 1 h. The precipitated salt was washed with fresh acetic acid, air dried, and recrystallized from benzene. The free base was prepared by adding aqueous NaOH and ether to the solid salt. The ether phase was dried over MgSO₄, filtered, and the ether removed *in vacuo* to yield the colorless liquid product (35.0 g, 61%). ¹H NMR (CD₂Cl₂): δ 7.10 (s, 2, H_m), 3.76 (br, 2, NH₂), 2.88 (sept, 2, CHMe₂), 1.24 (d, 12, CHMe₂).

3.2. 4-CN-2,6- ${}^{i}Pr_{2}$ - $C_{6}H_{2}NH_{2}$

4-Br-2,6-' Pr_2 -C₆H₂NH₂ (35.0 g, 0.14 mol) and CuCN (15 g, 0.17 mol) were combined with 25 ml of N,N-dimethylformamide in a 100 ml flask fitted with a reflux condenser. The mixture was refluxed for 12 h. Soon after heating began the reaction mixture turned deep purple to nearly black. The hot mixture was poured directly into 100 ml of aqueous NaCN (27.4 g, 0.56 mol) and the flask was washed with a small quantity of benzene. The mixture was shaken vigorously for five minutes and then transferred to a separatory funnel where the aqueous phase was separated and washed twice with benzene. The organic layers were combined and washed vigorously twice with NaCN solution, and then washed twice again with water. The organic layer was dried over MgSO4 and filtered. The solvents were removed in vacuo to yield essentially pure (according to proton NMR) black product. The product was purified by slow sublimation under high vacuum at 90°C. ¹H NMR (CD₂Cl₂): δ 7.29 (s, 2, H_m), 4.29 (br, 2, NH_2), 2.87 (sept, 2, CHMe₂), 1.26 (d, 12, CHMe₂). ¹³C NMR (CD₂Cl₂): δ 145.4, 132.6, 127.6 (C Ar), 121.3 (CN), 100.2 (C_p), 28.2 (CHMe₂), 22.1 (CHMe₂). IR (Nujol) 3510, 3410 (NH), 2170 (CN) cm⁻¹. Anal. Found: C, 77.13; H, 9.17; N, 13.57. C₁₈H₁₈N₂ calcd.: C, 77.18; H, 8.97; N, 13.85%. M.p. (corr.) 92.8-93.7°C.

3.3. $Mo(N-4-Br-2,6-{}^{i}Pr_2-C_6H_2)_2Cl_2(DME)$ (1a)

¹H NMR (C_6D_6): δ 7.30 (s, 4, H_m), 4.08 (sept, 4, CHMe₂), 3.37 (s, 6, OMe), 3.10 (s, 4, OCH₂), 1.06 (d, 24, CHMe₂). ¹³C NMR (C_6D_6): δ 152.2, 147.1, 126.8, 121.7 (C Ar), 70.9 (OMe), 62.6 (OCH₂), 28.1 (CHMe₂), 24.6 (CHMe₂). Anal. Found: C, 44.35; H, 5.90; N, 3.43. MoC₂₈H₄₂Br₂Cl₂N₂O₂ calcd.: C, 43.94; H, 5.53; N, 3.66%.

3.4. $Mo(N-4-CN-2,6-{}^{i}Pr_2-C_6H_2)_2Cl_2(DME)$ (1b)

Triethylamine (2.26 g, 22.3 mmol), chlorotrimethylsilane (4.86 g, 44.9 mmol), and 4-CN-2, $6^{-i}Pr_2-C_6H_2NH_2$ (2.262 g, 11.18 mmol) were added to a stirred slurry of ammonium dimolybdate (0.964 g, 2.83 mmol) in 50 ml of acetonitrile at room temperature. Addition of TM-SCI produced a yellow solution, while addition of the aniline produced a red solution. The mixture was stirred for 5 days at 25-30°C. Solvent was removed in vacuo and the solids were extracted with a minimum amount of DME. The salts were filtered off and washed with DME until the washings were colorless. Removal of solvent from the filtrate yielded the crude product in quantitative yield. The product was recrystallized from a mixture of DME and ether at -30° C to yield a brick red powder (2.55 g, 71%). ¹H NMR (CD₃CN): δ 7.42 $(s, 4, H_m)$, 3.85 (sept, 4, CHMe₂), 3.49 (br, 4, OCH₂), 3.31 (br, 6, OMe), 1.01 (d, 24, CH Me_2). ¹³C NMR

 $(C_6D_6, a \text{ drop of DME was added to solubilize the complex}): \delta 155.2 (C_{ipso}), 145.8 (C_o), 127.5 (C_m), 119.0 (CN), 110.9 (C_p), 71.9 (OCH_2), 58.8 (OMe), 28.0 (CHMe_2), 24.3 (CHMe_2).$

3.5. $Mo(N-3, 5-Me_2-C_6H_3)_2Cl_2(DME)$ (1c)

Triethylamine (11.90 g, 117.4 mmol), chlorotrimethylsilane (28.86 g, 266.6 mmol), and 3,5-Me₂-C₆H₃NH₂ (7.13 g, 58.8 mmol) were added to a stirred slurry of ammonium dimolybdate (5.00 g, 14.7 mmol) in a mixture of 30 ml of DME and 90 ml of toluene at room temperature for 36 h. The mixture was filtered through Celite to remove the salts formed during the reaction. The volatiles were removed to afford 12.85 g of product (88%). ¹H NMR (C₆D₆): δ 7.10 (s, 4, H Ar), 6.46 (s, 2, H Ar), 3.52 (br s, 6, OMe), 3.36 (s, 4, OCH₂), 1.91 (s, 12, Me). ¹³C NMR (C₆D₆): δ 157.3, 138.1, 129.3, 121.7 (C Ar), 71.4 (OMe), 62.5 (br, OCH₂), 21.0 (Me).

3.6. $Mo(N-2-{}^{i}Pr-C_{6}H_{4})_{2}Cl_{2}(DME)$ (1d)

¹H NMR (C_6D_6): δ 7.68 (d, 2, H_o), 7.03 (d, 2, H_m), 6.84 (dd, 2, H_m or H_p), 6.77 (dd, 2, H_m or H_p), 3.89 (sept, 2, CHMe₂), 3.44 (s, 6, OMe), 3.19 (s, 4, OCH₂), 1.25 (d, 12, CHMe₂). ¹³C NMR (C_6D_6): δ 155.5, 141.5, 127.2, 126.4, 125.5, 125.3 (C Ar), 71.1 (OCH₂), 62.8 (OMe), 28.9 (CHMe₂), 24.0 (CHMe₂). Anal. Found: C, 50.12; H, 6.19; N, 5.36. MoC₂₂H₃₂Cl₂N₂O₂ calcd.: C, 50.49; H, 6.16; N, 5.35%.

3.7. $M_0(N-2-CF_3-C_6H_4)_2Cl_2(DME)$ (1e)

¹H NMR (C_6D_6): δ 7.80 (d, 2, H Ar), 7.16 (d, 2, H Ar), 6.75 (dd, 2, H Ar), 6.40 (dd, 2, H Ar), 3.47 (s, 6, OMe), 3.13 (s, 4, OCH₂). ¹³C NMR (C_6D_6): δ 153.2, 132.4, 126.0, 122.0, 125.5 (C Ar), 123.9 (CF₃), 119.4 (C_0), 71.2 (OCH₂), 63.2 (OMe). ¹⁹F NMR (C_6D_6): δ -60.6 (CF₃).

3.8. $Mo(N-2-Ph-C_6H_4)_2Cl_2(py)_2$ (1f)

Triethylamine (2.58 g, 25.5 mmol), chlorotrimethylsilane (5.89 g, 54.2 mmol), pyridine (5.04 g, 63.8 mmol) and 2-Ph-C₆H₄NH₂ (2.16 g, 12.8 mmol) were added to a stirred slurry of ammonium dimolybdate (1.08 g, 3.19 mmol) in 50 ml of benzene at room temperature. The mixture was stirred for 12 h at 60°C, cooled to room temperature, and filtered through Celite. The salts were washed with benzene until the washings were colorless. The solvent was removed from the filtrate *in vacuo*. The red-purple product was recrystallized from a mixture of dichloromethane and pentane at -30° C (3.36 g, 80%). ¹H NMR (CDCl₃): δ 8.36 (d, 4, H Ar), 7.66 (d, 2, H Ar), 7.56 (d, 4, H Ar), 7.48 (t, 2, H Ar), 7.34 (d, 2, H Ar), 7.27-7.05 (m, 10, H Ar), 6.87 (m, 4, H Ar). ¹³C 'NMR (CDCl₃): δ 154.4, 151.4, 138.7, 137.2, 134.0, 130.4, 129.0, 128.9, 127.9, 127.6, 127.0, 126.9, 123.2 (C Ar). Anal. Found: C, 61.96; H, 4.30; N, 8.10. $MoC_{34}H_{28}N_4Cl_2$ calcd.: C, 61.92; H, 4.28; N, 8.50%.

3.9. $Mo(N-1-adamantyl)_2Cl_2(DME)$ (1g)

Ammonium dimolybdate (5.0 g, 14.7 mmol) was suspended in a mixture of 150 ml of toluene and 20 ml of DME. Triethylamine (16.9 g, 159 mmol), chlorotrimethylsilane (25.8 g, 238 mmol), and 1aminoadamantane (8.0 g, 52.9 mmol) were added sequentially and the mixture was heated to 70°C for 12 h. The salts were filtered off and the solvents were removed from the filtrate *in vacuo*. The yellow-orange product was recrystallized from toluene (11.3 g, 76%). ¹H NMR (CD₂Cl₂): δ 3.80 (s, 4, OCH₂), 3.75 (s, 6, OMe), 2.12 (m, 6, CH), 2.05 (m, 12, CH₂), 1.66 (m, 12, CH₂). ¹³C NMR (C₆D₆): δ 73.8 (NC), 71.3 (OMe), 63.2 (OCH₂), 43.5 (CH₂), 36.5 (CH₂), 30.0 (CH).

3.10. $M_0(N-4-CN-2,6-{}^{i}Pr_2-C_6H_2)_2(CH_2CMe_3)_2$ (2a)

¹H NMR (toluene- d_8): δ 7.10 (s, 4, H_m), 3.36 (sept, 4, CHMe₂), 2.20 (s, 4, CH₂), 1.12 (s, 18, CMe₃), 0.84 (d, 24, CHMe₂). Anal. Found: C, 67.75; H, 8.41; N, 8.86. MoC₃₆H₅₄N₄ calcd.: C, 67.69; H, 8.52; N, 8.77%.

3.11. $M_0(N-4-Br-2,6-{}^{i}Pr_2-C_6H_2)_2(CH_2CMe_2Ph)_2$ (2b)

¹H NMR (C_6D_6): δ 7.36 (d, 4, H Ar), 7.25 (s, 4, H Ar), 7.19 (dd, 4, H Ar), 7.06 (t, 2, H Ar), 3.41 (sept, 4, CH Me₂), 1.60 (s, 4, CH₂), 1.40 (s, 12, CMe₂Ph), 0.91 (d, 24, CH Me₂). ¹³C NMR (C_6D_6): δ 152.0, 150.1, 144.9, 128.6, 126.7, 126.6, 126.5, 119.9 (C Ar), 79.9 (CH₂), 39.9 (CMe₂Ph), 32.4 (CMe₂Ph), 28.5 (CHMe₂), 23.5 (CH Me₂). Anal. Found: C, 60.77; H, 6.80; N, 3.06. MoC₄₄H₅₈Br₂N₂ calcd.: C, 60.70; H, 6.71; N, 3.22%.

3.12. $Mo(N-2, 6-Me_2-C_6H_3)_2(CH_2CMe_2Ph)_2$ (2c)

¹H NMR ($C_6 D_6$): δ 7.39 (d, 4, H Ar), 7.15 (dd, 4, H Ar), 7.05 (t, 2, H Ar), 6.87 (d, 4, H_m NAr), 6.67 (t, 2, H Ar), 2.13 (s, 12, Me), 1.74 (s, 4, CH₂), 1.43 (s, 12, CMe₂Ph). ¹³C NMR ($C_6 D_6$): δ 156.5, 150.6, 132.4, 128.6, 127.9, 126.6, 126.3, 124.9 (C Ar), 77.4 (CH₂), 39.7 (CMe₂Ph), 32.3 (CMe₂Ph), 18.9 (Me). Anal. Found: C, 71.74; H, 7.31; N, 4.38. MoC₃₆H₄₄N₂ calcd.: C, 71.98; H, 7.38; N, 4.66%.

3.13. $Mo(N-2,6-Me_2-C_6H_3)_2(CH_2CMe_3)_2$ (2d)

¹H NMR (C_6D_6): δ 6.87 (d, 4, H Ar), 6.77 (t, 2, H Ar), 2.25 (s, 12, Me), 2.20 (s, 4, CH₂), 1.18 (s, 18, CMe₃). ¹³C NMR (C_6D_6): δ 156.6, 132.4, 128.4, 125.1 (C Ar), 79.7 (CH₂), 33.9 (CMe₃), 33.8 (CMe₃), 19.1 (Me). Anal. Found: C, 65.64; H, 8.62; N, 6.01. MoC₂₆H₄₀N₂ calcd.: C, 65.53; H, 8.46; N, 5.88%.

3.14. $Mo(N-3,5-Me_2-C_6H_3)_2(CH_2CMe_2Ph)_2$ (2e)

¹H NMR (C_6D_6): δ 7.41 (d, 4, H Ar), 7.16 (dd, 4, H Ar), 7.05 (t, 2, H Ar), 6.59 (s, 4, H Ar), 6.50 (s, 2, H Ar), 2.21 (s, 4, CH₂), 2.03 (s, 12, Me), 1.57 (s, 12, Me). ¹³C NMR (C_6D_6): δ 158.1, 152.0, 137.7, 128.5, 127.3, 126.3, 125.7, 122.3 (C Ar), 81.2 (t, CH₂), 42.0 (s, CMe₂Ph), 33.4 (q, CMe₂Ph), 21.1 (q, Me).

3.15. $Mo(N-2-{}^{i}Pr-C_{6}H_{4})_{2}(CH_{2}CMe_{2}Ph)_{2}$ (2f)

¹H NMR (C_6D_6): δ 7.38 (d, 4, H Ar), 7.17 (dd, 4, H Ar), 7.09–7.04 (m, 6, H Ar), 6.88–6.80 (m, 4, H Ar), 3.70 (sept, 2, CHMe₂), 1.85 (s, 4, CH₂), 1.47 (s, 12, CMe₂Ph), 1.20 (d, 12, CHMe₂). ¹³C NMR (C_6D_6): δ 154.8, 151.1, 141.0, 128.6, 126.4, 126.3, 126.2, 126.2, 125.9, 125.4 (C Ar), 78.5 (CH₂), 40.8 (CMe₂Ph), 32.8 (CMe₂Ph), 28.5 (CHMe₂), 23.5 (CHMe₂).

3.16. $Mo(N-2-CF_3-C_6H_4)_2(CH_2CMe_2Ph)_2$ (2g)

¹H NMR (C_6D_6): δ 7.36 (d, 4, H Ar), 7.27 (d, 2, H Ar), 7.11 (dd, 4, H Ar), 6.98 (t, 2, H Ar), 6.77 (d, 2, H Ar), 6.69 (dd, 2, H Ar), 6.50 (dd, 2, H Ar), 2.00 (s, 4, CH_2), 1.43 (s, 12, CMe_2Ph). ¹³C NMR (C_6D_6): δ 153.3, 150.3, 132.2, 128.7, 128.1, 126.2, 126.1, 124.5, 125.7 (C Ar), 124.5 (q, CF₃), 120.5 (C Ar), 82.4 (CH₂), 40.9 (CMe_2Ph), 32.3 (CMe_2Ph). ¹⁹F (C_6D_6): δ -60.7 (CF₃). Anal. Found: C, 60.36; H, 5.40; N, 4.01. MoC₃₄H₃₄F₆N₂ calcd.: C, 60.00; H, 5.04; N, 4.12%.

3.17. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})_{2}(CH_{2}CMe_{2}Ph)_{2}$ (2h)

¹H NMR (C₆D₆): δ 7.40 (d, 4, H Ar), 7.18 (d, 2, H Ar), 7.17 (dd, 4, H Ar), 7.10 (d, 2, H Ar), 7.03 (t, 2, H Ar), 6.76 (dd, 2, H Ar), 6.71 (dd, 2, H NAr), 1.90 (s, 4, CH₂), 1.60 (s, 18, CMe₃), 1.51 (s, 12, CMe₂Ph). ¹³C NMR (C₆D₆): δ 154.4, 151.3, 139.8, 130.8, 128.7, 126.8, 126.2, 126.2, 126.0, 125.6 (C Ar), 81.0 (CH₂), 41.0 (CMe₂Ph), 35.7 (CMe₃), 32.8 (CMe₂Ph), 30.5 (CMe₃).

3.18. $Mo(N-2-Bu-C_6H_4)_2(CH_2CMe_3)_2$ (2i)

¹H NMR (C_6D_6): δ 7.33 (d, 2, H År), 7.21 (d, 2, H Ar), 6.79 (dd, 2, H Ar), 6.72 (dd, 2, H Ar), 2.11 (s, 4, CH₂), 1.95 (s, 18, CMe₃), 1.67 (s, 18, CMe₃). ¹³C NMR (C_6D_6): δ 154.5, 139.7, 131.1, 126.9, 126.2, 125.8 (C Ar), 82.8 (CH₂), 36.3 (CMe₃), 35.3 (CMe₃), 33.9 (CMe₃), 30.8 (CMe₃).

3.19. $Mo(N-2-Ph-C_6H_4)_2(CH_2CMe_3)_2$ (2j)

¹H NMR (C_6D_6): δ 7.65 (m, 4, H Ar), 7.41 (m, 2, H Ar), 7.27–7.09 (m, 6, H Ar), 6.96–6.83 (m, 6, H Ar), 1.73 (s, 4, CH₂), 0.96 (s, 18, CMe₃). ¹³C NMR (CDCl₃): δ 153.9, 139.9, 133.8, 129.9, 129.7, 127.8, 127.6, 127.0, 126.8, 124.9 (C Ar), 83.1 (CH₂), 34.7 (CMe₃), 33.1 (CMe₃). Anal. Found: C, 71.44: H, 7.09; N, 4.57. MoC₃₄H₄₀N₂ calcd.: C, 71.31; H, 7.04; N, 4.89%.

3.20. $Mo(N-1-adamantyl)_2(CH_2CMe_2Ph)_2$ (2k)

¹H NMR (C_6D_6): δ 7.40 (d, 4, H Ar), 7.30 (dd, 4, H Ar), 7.14 (t, 2, H Ar), 2.09 (br, 6, CH), 1.88 (br d, 12, CH₂), 1.67 (br t, 12, CH₂), 1.59 (s, 4, CH₂), 1.44 (s, 12, CMe₂Ph). ¹³C NMR (C_6D_6): δ 153.0, 128.3, 126.2, 125.5 (C Ar), 72.3 (CH₂), 68.7 (NC), 46.0 (CH₂), 39.8 (CMe₂Ph), 36.7 (CH₂), 33.4 (CMe₂Ph), 30.5 (CH). Anal. Found: C, 71.74; H, 7.31; N, 4.38. MoC₃₆H₄₄N₂ calcd.: C, 71.98; H, 7.38; N, 4.66%.

3.21. Synthesis of bistriflate complexes

In order to obtain high yields it is important that reagents and solvents be absolutely pure. In a typical procedure, chilled triflic acid is added to chilled DME prior to adding it to a solution of 2. The reaction proceeds well if the triflic acid/DME solution is colorless, pale yellow, or even slightly brown. If, however, the color is black or purple the reaction does not proceed in high yield and pure product is difficult to separate from side products. In some cases the workup procedure has also been modified from that previously reported. The crude solid product is typically brown. The dark-colored impurities may be removed by washing the crude product with cold diethyl ether. It is important that the ether be chilled since in many cases 3 is slightly soluble in ether. Alternatively, the washing step may be performed after initial removal of salt.

3.22. $Mo(N-4-Br-2,6-{}^{i}Pr_2-C_6H_2)(CHCMe_2Ph)(OSO_2-CF_3)_2(DME)$ (3a)

The dark crude product was extracted with toluene and the anilinium triflate was filtered off. The product was purified by crystallization from toluene followed by washing with cold toluene. ¹H NMR δ (C₆D₆): 14.31 (s, 1, CH), 7.52 (d, 2, H Ar), 7.22 (s, 2, H Ar), 7.09 (dd, 2, H Ar), 6.87 (t, 1, H Ar), 3.75 (s, 3, OMe), 3.65 (sept, 2, CHMe₂), 3.22 (m, 2, OCH₂), 2.85 (m, 2, OCH₂), 2.78 (m, 3, OMe), 1.82 (s, 6, CMe₂Ph), 1.21 (d, 6, CHMe₂), 1.05 (d, 6, CHMe₂). ¹³C (C₆D₆): δ 328.5 (d, $J_{CH} = 122$, CH), 154.0, 150.4, 148.3, 128.6, 127.6, 126.7, 126.6, 125.5 (C Ar), 119.9 (q, CF₃), 72.8 (OCH₂), 70.1 (OCH₂), 65.8 (OMe), 62.0 (OMe), 58.9 (CMe₂Ph), 31.0 (CMe₂Ph), 28.4 (CHMe₂), 25.2 (CHMe₂), 22.3 (CHMe₂). ¹⁹F (C₆D₆): δ -77.0 (CF₃).

3.23. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_3)(OSO_2CF_3)_2-(DME)$ (3b)

The solvents were removed *in vacuo* and the remaining solids loaded into a Soxhlet extractor and extracted overnight with benzene. The benzene was removed *in vacuo* and the solids recrystallized from DME. ¹H NMR (CD₂Cl₂): δ (major isomer, 85%) 14.07 (s, 1, CH), 7.16 (t, 1, H Ar), 7.08 (d, 2, H Ar), 4.29 (s, 3, OMe), 4.08 (br m, 2, OCH₂), 3.85 (br m, 2, OCH₂), 3.50 (s, 3, OMe), 2.48 (s, 6, Me), 1.26 (s, 9, CMe₃); (minor isomer, 15%, partially assigned) 14.80 (CH), 4.17 (s, 3, OMe), 4.00 (m, 1, OCH₂), 3.67 (s, 3, OMe), 3.59 (m, 1, OCH₂), 3.32 (m, 1, OCH₂), 2.52 (s, 6, Me), 1.24 (s, 9, CMe₃). ¹³C NMR (CD₂Cl₂): δ (major isomer only) 330.2 (d, $J_{CH} = 118$, CH), 141.0, 132.4, 129.9, 128.9 (C Ar), 119.6 (q, CF₃), 74.1 (OCH₂), 70.9 (OCH₂), 66.1 (OMe), 62.6 (OMe), 52.5 (CMe₃), 30.5 (CMe₃), 19.6 (Me). Anal. Found: C, 34.00; H, 4.18; N, 2.24. MoC₁₉H₂₉O₈NF₆S₂ calcd.: C, 33.88; H, 4.34; N, 2.08%.

3.24. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)(OSO_2CF_3)_2-(DME)$ (3c)

The light yellow crude product was extracted with benzene and the insoluble anilinium salt was removed by filtration. The benzene was removed and the solid was recrystallized from ether. ¹H NMR (C_6D_6): δ 14.23 (s, 1, CH), 7.64 (d, 2, H Ar), 6.98 (t, 2, H Ar), 6.68 and 6.66 (m, 2, H Ar), 6.58 (d, 2, H Ar), 3.84 (s, 3, OMe), 3.34 (m, 2, OCH₂), 2.92 (m, 2, OCH₂), 2.69 (s, 3, OMe), 2.35 (s, 6, Me), 1.74 (s, 6, CMe₂Ph). ¹³C NMR (C_6D_6): δ 326.2 (d, $J_{CH} = 122$, CH), 153.9, 148.3, 140.8, 129.3, 128.3, 127.0, 126.6 (C Ar), 120.0 (q, CF₃), 73.2 (OCH₂), 69.9 (OCH₂), 65.4 (OMe), 61.4 (OMe), 58.3 (CMe₂Ph), 30.3 (CMe₂Ph), 19.5 (Me). Anal. Found: C, 39.42; H, 4.18; N, 1.92. MoC₃₆H₄₄N₂ calcd.: C, 39.19; H, 4.25; N, 1.90%.

3.25. $Mo(N-3,5-Me_2-C_6H_3)(CHCMe_2Ph)(OSO_2CF_3)_2-(DME)$ (3d)

The light yellow crude product was extracted with benzene and the insoluble anilinium salt was removed by filtration. The benzene was removed and the solid was recrystallized from ether. ¹H NMR (C_6D_6): δ 13.80 (s, 1, CH), 7.75 (s, 2, H Ar), 7.44 (d, 2, H Ar), 7.19 (dd, 2, H Ar), 6.99 (t, 1, H Ar), 6.54 (s, 1, H Ar), 3.26 (br s, 2, OCH₂), 3.10 (br s, 3, OMe), 3.08 (br s, 3, OMe), 2.84 (br s, 2, OCH₂), 1.97 (s, 6, Me), 1.90 (s, 6, Me); (minor isomer, 3%) 14.96 (br s, 1, CH). ¹³C NMR (C_6D_6): δ 323.6 (d, $J_{CH} = 126$, CH), 155.6, 149.1, 139.1, 132.5, 128.7, 126.7, 126.7, 126.5 (C Ar), 120.2 (q, CF₃), 73.5 (t, OCH₂), 69.6 (t, OCH₂), 63.2 (q, OMe), 62.0 (q, OMe), 58.8 (s, CMe₂Ph), 30.7 (q, CMe₂Ph), 20.9 (q, Me).

3.26. $Mo(N-2-{}^{i}Pr-C_{6}H_{4})(CHCMe_{2}Ph)(OSO_{2}CF_{3})_{2}-(DME)$ (3e)

When 4.77 mmol of $Mo(N-2-{}^{i}Pr-C_{6}H_{4})_{2}(CH_{2}CMe_{2}-Ph)_{2})$ was employed, about 30 ml of toluene was added to extract the product away from the anilinium salt; this mixture was stirred overnight and then was cooled prior to filtration through Celite. The salts were washed with excess toluene until all color was removed.

Toluene was removed from the filtrate in vacuo. A small amount of ether (10 ml) was added to the brownish solids to extract soluble impurities. After 10 minutes the mixture was filtered and the solids washed with small quantities of ether until bright yellow. ¹H NMR ($C_6 D_6$): δ (major isomer, 94%) 14.14 (s, 1, CH), 7.99 (d, 1, H Ar), 7.53 (d, 2, H Ar), 7.16 (dd, 2, H Ar), 6.92 (m, 2, H Ar), 6.80 (m, 2, H Ar), 3.76 (sept, 1, $CHMe_2$), 3.46 (s, 3, OMe), 3.26 (m, 2, OCH₂), 2.88 (m, 2, OCH₂), 2.86 (s, 3, OMe), 1.87 (s, 6, CMe_2Ph), 1.24 (d, 6, CH Me₂); δ (minor isomer, 6%, partially assigned) 15.08 (s, 1, CH), 7.38 (d, H Ar), 7.06 (m, H Ar), 3.22 (s, 3, OMe), 3.10 (m, 1, OCH₂), 2.99 (s, 3, OMe). ¹³C (C₆D₆): δ 326.1 (CH), 153.1, 149.1, 148.9, 131.1, 130.5, 128.7, 126.9, 126.7, 126.7, 126.2 (C Ar), 120.1 (q, CF₃), 73.4 (OCH₂), 69.7 (OCH₂), 64.2 (OMe), 61.8 (OMe), 58.8 (CMe₂Ph), 30.9 (CMe₂Ph), 28.6 (CHMe₂), 23.7 (CHMe₂). Anal. Found: C, 40.13; H, 4.33; N, 1.49. MoC₂₅H₃₃F₆NO₈S₂ calcd.: C, 40.06; H, 4.44; N, 1.87%.

3.27. $Mo(N-2-CF_3-C_6H_4)(CHCMe_2Ph)(OSO_2CF_3)_2$ -(DME) (**3f**)

When 3.10 mmol of Mo(N-2-CF₃-C₆H₄)₂Cl₂(DME) was employed, about 30 ml benzene was added to the crude product and allowed to stir overnight. The anilinium triflate was removed by filtration, then solvent was removed from the filtrate in vacuo. The solids were recrystallized from diethyl ether. ¹H NMR $(C_6 D_6)$: δ (major isomer, 80%) 14.05 (s, 1, CH), 7.93 (d, 1, H Ar), 7.60 (d, 2, H Ar), 7.03 (dd, 2, H Ar), 6.99 (d, 1, H Ar), 6.76 (dd, 1, H Ar), 6.74 (dd, 1, H Ar), 3.48 (br, 3, OMe), 3.22 (br, 2, OCH₂), 2.84 (br, 2, OCH₂), 2.81 (br, 3, OMe), 1.79 (s, 6, CMe_2Ph); δ (minor isomer, 20%) 15.17 (s, 1, CH), 8.25 (d, 1, H Ar), 7.39 (d, 2, H Ar), 7.05 (dd, 1, H Ar), 7.04 (dd, 2, H Ar), 6.87 (dd, 1, H Ar), 6.84 (dd, 1, H Ar), 3.15 (m, 2, OCH₂), 3.04 (s, 3, OMe), 2.98 (s, 3, OMe), 2.90 (m, 1, OCH₂), 2.52 (m, 1, OCH₂), 1.94 (s, 3, CMe₂Ph), 1.53 (s, 3, CMe₂Ph). ¹³C (C₆D₆): δ (major isomer) 325.9 (CH), 150.6, 148.3, 133.5, 132.6, 129.1, 128.6, 127.4, 126.7, 125.8, 125.6 (C Ar), 122.9 (q, CF₃ NAr), 120.1 (q, CF₃), 73.7 (OCH₂), 69.8 (OCH₂), 64.8 (OMe), 62.0 (OMe), 59.3 (CMe₂Ph), 30.6 (CMe₂Ph); (minor isomer) 334.4 (CH), 151.1, 146.0, 133.4, 132.6, 129.0, 128.8, 126.9, 126.8, 126.0, 124.6 (C Ar), 123.5 (q, CF₃ NAr), 120.3 (q, CF_3), the other triflate could not be located, 76.9, 76.1, 70.0, 61.2 (DME resonances), 59.6 (CMe₂Ph), 30.0 (CMe_2Ph) , 28.6 (CMe_2Ph) . ¹⁹F (C_6D_6) : (major isomer) -60.9 (CF₃ NAr), -76.9 (CF₃); (minor isomer) -59.5(CF₃ NAr), -76.9 (CF₃), -77.7 (CF₃). Anal. Found: C, 35.79; H, 3.47; N, 1.52. MoC₂₃H₂₆F₉NO₈S₂ calcd.: C, 35.62; H, 3.38; N, 1.81%.

3.28. $Mo(N-2-'Bu-C_6H_4)(CHCMe_2Ph)(OSO_2CF_3)_2$ (DME) (**3**g)

When 5.33 mmol of Mo(N-2-¹Bu-C₆H₄)₂(CH₂C-Me₂Ph)₂ was employed, about 40 ml of toluene was added to extract the product away from the anilinium salt; this mixture stirred briefly, then was cooled prior to filtration through Celite. The salts were washed with copious amounts of toluene until the remaining solids were white. Toluene was removed from the filtrate in vacuo. A small amount of diethyl ether (20 ml) was added to the brownish solids to extract soluble impurities. After 15 min the mixture was filtered and the solids washed with small quantities of diethyl ether until bright yellow: ¹H NMR (C_6D_6): δ (major isomer, 90%) 14.24 (s, 1, CH), 8.24 (d, 1, H Ar), 7.56 (d, 2, H Ar), 7.21 (dd, 2, H Ar), 7.05-6.96 (m, 3, H Ar), 6.80 (t, 1, H Ar), 3.59 (s, 3, OMe), 3.19 (s, 2, OCH₂), 2.84 (s, 2, OCH₂), 2.74 (s, 3, OMe), 1.94 (s, 6, CMe₂Ph), 1.44 (s, 9, CMe₃); δ (minor isomer, 10%, partially assigned) 15.18 (s, 1, CH), 7.40 (d, 2, H Ar), 2.94 (s, 3, OMe), 2.08 (s, 3, CMe₂Ph), 1.52 (s, 3, CMe₂Ph), 1.50 (s, 9, CMe_3 ; (CD₂Cl₂): δ (major isomer, 63%) 14.10 (s, 1, CH), 7.89 (d, 1, H Ar), 7.53-7.03 (H Ar for both isomers), 4.19 (s, 3, OMe), 4.17 (m, 2, OCH₂), 3.88 (m, 2, OCH₂), 3.46 (s, 3, OMe), 1.77 (s, 6, CMe₂Ph), 1.48 (s, 9, CMe_3); δ (minor isomer, 37%, partially assigned) 14.82 (s, 1, CH), 7.53-7.03 (H Ar for both isomers), 4.06 (m, 2, OCH₂), 3.63 (s, 3, OMe), 3.58 (m, 1, OCH₂), 3.56 (m, 1, OCH₂), 3.51 (s, 3, OMe), 2.04 (s, 3, CHCMe₂Ph), 1.51 (s, 12, CMe₂Ph and CMe₃). 13 C (CD_2Cl_2) : δ (major isomer) 325.2 (CH), 153.7, 148.8, 147.9, 135.2, 130.6, 128.5, 127.5-126.6 (C Ar), 119.6 (q, CF₃), 74.2 (OCH₂), 70.9 (OCH₂), 66.0 (OMe), 62.7 (OMe), 59.2 (CMe_2Ph), 36.1 (CMe_3), 30.8 (CMe_2Ph), 30.7 (CMe₃); (minor isomer) 332.3 (CH), 153.5, 148.5, 146.5, 134.8, 130.3, 129.1, 127.5-126.6 (C Ar), 77.6, 75.8, 70.6, 61.3 (DME), 58.7 (CMe₂Ph), 30.8 (CMe₃), 30.5 (CMe₂Ph), 28.8 (CMe₂Ph).

3.29. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})(CHCMe_{3})(OSO_{2}CF_{3})_{2}(DME)$ (3h)

The product was extracted away from the anilinium triflate with benzene. The benzene was removed *in vacuo* and the product was recrystallized from dichloromethane. ¹H NMR (CD₂Cl₂): δ (major isomer, 85%) 13.99 (s, 1, CH), 7.92 (d, 1, H Ar), 7.45 (d, 1, H Ar), 7.31 (m, 2, H Ar), 4.27 (s, 3, OMe), 4.15 (br s, 2, OCH₂), 3.85 (br s, 2, OCH₂), 3.44 (s, 3, OMe), 1.48 (s, 9, CMe₃), 1.29 (s, 9, CMe₃); (minor isomer, 15%, partially assigned) 14.76 (s, 1, CH), 1.46 (s, 9, CMe₃), 1.28 (s, 9, CMe₃). ¹³C NMR (C₆D₆): δ (major isomer only) 328.8 (d, $J_{CH} = 117$, CH), 153.9, 147.9, 134.9, 130.1, 127.1, 126.4 (C Ar), 119.7 (q, CF₃), 74.2 (OCH₂),

71.1 (OCH₂), 66.0 (OMe), 62.4 (OMe), 36.1 (CMe_3), 31.0 (CHC Me_3), 30.6 (CMe_3).

3.30. $Mo(N-2-Ph-C_6H_4)(CHCMe_3)(OSO_2CF_3)_2(DME)$ (3i)

The product was extracted with benzene and the anilinium triflate was removed by filtration. The benzene was removed under vacuum and the pale yellow product washed with cold DME followed by diethyl ether. ¹H NMR (CDCl₃): δ (major isomer, 55%) 13.99 (s, 1, CH), 8.14-8.03 (m, 2, H Ar), 7.64 (d, 1, H Ar), 7.52-7.30 (m, 6, H Ar), 3.88 (s, 3, OMe), 3.43 (s, 3, OMe), 3.08 (m, 2, OCH₂), 2.80 (m, 2, OCH₂), 1.37 (s, 9, CMe₃); δ (minor isomer, 45%) 14.66 (s, 1, CH), 8.14-8.03 (m, 2, H Ar), 7.62 (d, 1, H Ar), 7.52-7.30 (m, 6, H Ar), 3.77 (m, 2, OCH₂), 3.64 (m, 2, OCH₂), 3.55 (s, 3, OMe), 3.40 (s, 3, OMe), 1.39 (s, 9, CMe_3). ¹³C NMR: (CDCl₃) (for major and minor isomer) 337.8 (CH minor), 328.9 (CH major), 152.7, 152.6, 138.8, 138.7, 138.4, 137.1, 133.6, 132.3, 130.5, 130.3, 130.0, 129.7, 129.6, 129.1, 129.0, 128.5, 128.3, 128.1, 127.7, 127.4 (C Ar), 119.1 (q, CF₃ major), 119.3 (q, CF₃ minor), 71.8, 70.1, 65.8, 61.2, 58.9 (DME), 53.2 (CMe₃) minor), 52.6 (CMe₃ major), 30.9 (CMe₃ major and minor).

3.31. $Mo(N-1-adamantyl)(CHCMe_2Ph)(OSO_2CF_3)_2$ -(DME) (3j)

The product was extracted with benzene and the ammonium triflate was removed by filtration. The benzene was removed in vacuo and the dark solid washed with cold ether to afford a white solid. ¹H NMR (CD_2Cl_2) : δ (major isomer, 67%) 14.72 (s, 1, CH), 7.43 (d, 2, H Ar), 7.35 (dd, 2, H Ar), 7.18 (t, 1, H Ar), 3.48 (s, 4, OCH₂), 3.33 (s, 6, OMe), 2.23 (s, 3, CMe₂Ph), 2.20 (br m, 6, CH_2), 1.71 (br t, 6, CH_2), 1.61 (br t, 3, CH), 1.51 (s, 3, CMe_2 Ph); (minor isomer, 33%) 13.87 (s, 1, CH), 7.43 (d, 2, H Ar), 7.31 (dd, 2, H Ar), 7.20 (t, 1, H Ar), 4.18 (m, 1, OCH₂), 4.02 (m, 2, OCH₂), 3.84 (s, 3, OMe), 3.70 (m, 1, OCH₂), 3.64 (s, 3, OMe), 2.31 (br m, 3, CH), 2.28 (br m, 6, CH₂), 2.09 (br d, 6, CH₂), 1.78 (s, 6, CMe₂Ph). ¹³C NMR (CD₂Cl₂): δ (major isomer) 327.4 (d, $J_{CH} = 128$, CH), 129.0, 127.0, 126.6 (C Ar), 119.6 (q, CF₃), 72.3 (OCH₂), 70.4 (OCH₂), 61.4 (OMe), 59.0 (OMe), 43.7 (CH₂), 35.9 (CH₂), 31.3 (CH), 29.8 (CMe₂Ph), 29.7 (CMe₂Ph); (minor isomer) 318.9 (d, $J_{CH} = 121$, CHCMe₂Ph), 128.8, 127.0, 126.7 (C Ar), 120.1 (q, CF₃), 79.1 (OCH₂), 63.8 (OMe), 42.9 (CH₂), 35.7 (CH₂), 30.3 (CH), 29.8 (CMe₂Ph). Anal. Found: C, 40.73; H, 4.92; N, 1.77. MoC₂₆H₃₇F₆NO₈S₂ calcd.: C, 40.79; H, 4.87; N, 1.83%.

3.32. $Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)(OCEt_{3})_{2}$ (4a) ¹H NMR (C₆D₆): δ 11.17 (s, 1, CH), 7.40 (d, 2, H Ar), 7.16 (dd, 2, H Ar), 7.05 (m, 3, H Ar), 7.05 (t, 1, H

Ar), 4.04 (sept, 2, $CHMe_2$), 1.69 (s, 6, CMe_2Ph), 1.52 (q, 12, CH_2), 1.25 (d, 12, $CHMe_2$), 0.87 (t, 18, Me). ¹³C NMR (C_6D_6): δ 261.8 (d, $J_{CH} = 119$, CH), 153.0, 150.5, 146.0, 128.3, 126.9, 126.2, 125.9, 123.4 (C Ar), 84.1 (CEt_3), 52.6 (CMe_2Ph), 31.9 (CMe_2Ph), 31.8 (CH_2), 28.0 ($CHMe_2$), 24.4 ($CHMe_2$), 8.6 (Me).

3.33. $Mo(N-2,6-{}^{i}Pr_2-C_6H_3)(CHCMe_2Ph)(O-1-adaman-tyl)_2$ (4b)

tyl)₂ (4b) ¹H NMR (C₆D₆): δ 11.33 (s, 1, CHCMe₂Ph), 7.43 (d, 2, H Ar), 7.16 (dd, 2, H Ar), 7.09 (m, 3, H Ar), 7.02 (t, 1, H Ar), 4.05 (sept, 2, CHMe₂), 2.05 (br s, 6, CH), 1.80 (m, 12, CH₂), 1.74 (s, 6, CMe₂Ph), 1.51 (br s, 12, CH₂), 1.32 (d, 12, CHMe₂). ¹³C (C₆D₆): δ 262.2 (d, $J_{CH} = 119$, CH), 153.3, 149.9, 146.3, 128.3, 127.1, 126.3, 125.8, 123.2 (C Ar), 76.2 (OC), 52.6 (CMe₂Ph), 46.5 (CH), 36.6 (CH₂), 31.7 (CH₂), 31.6 (CMe₂Ph), 28.3 (CHMe₂), 24.2 (CHMe₂).

3.34. $Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)[OCMe_{2}-(CMe_{3})]_{2}$ (4c)

¹H NMR (C_6D_6): δ 11.29 (s, 1, CH), 7.41 (d, 2, H Ar), 7.17 (dd, 2, H Ar), 7.04 (m, 3, H Ar), 7.03 (t, 1, H Ar), 4.00 (sept, 2, CHMe₂), 1.70 (s, 6, CMe₂Ph), 1.26 (s, 6, Me), 1.26 (d, 12, CHMe₂), 1.06 (s, 6, Me), 1.00 (s, 18, CMe₃). ¹³C NMR (C_6D_6): δ 263.4 (d, $J_{CH} = 119$, CH), 153.3, 150.3, 146.3, 128., 127.3, 126.2, 126.0, 123.3 (C Ar), 83.9 (OC), 52.9 (CMe₂Ph), 39.0 (CMe₃), 31.7 (CMe₂Ph), 28.1 (CHMe₂), 26.7 (Me), 26.3 (CMe₃), 25.5 (Me), 24.3 (CHMe₂).

3.35. $Mo(N-2, 6-{}^{i}Pr_2-C_6H_3)(CHCMe_2Ph)(OCHMe_2)_2$ (4d)

¹H NMR (C_6D_6): δ 11.24 (s, 1, CH), 7.40 (d, 2, H Ar), 7.17 (dd, 2, H Ar), 7.06 (m, 3, H Ar), 7.05 (t, 1, H Ar), 4.50 (sept, 2, CHMe₂), 3.99 (sept, 2, CHMe₂), 1.66 (s, 6, CMe₂Ph), 1.28 (d, 12, CHMe₂), 1.24 (s, 6, OCH MeMe), 1.19 (s, 6, OCHMeMe).

3.36. $Mo(N-2,6-{}^{i}Pr_2-C_6H_3)(CHCMe_2Ph)[OCMe_2-(CF_3)]_2$ (4f)

¹H NMR (C_6D_6): δ 11.68 (s, 1, CH), 7.28 (d, 2, H Ar), 7.12 (dd, 2, H Ar), 7.02 (m, 3, H Ar), 7.01 (t, 1, H Ar), 3.74 (sept, 2, CHMe₂), 1.57 (s, 6, CMe₂Ph), 1.20 (s, 6, Me), 1.18 (s, 6, Me), 1.18 (d, 12, CHMe₂). ¹³C NMR (C_6D_6): δ 273.9 (d, $J_{CH} = 120$, CH), 153.4, 148.8, 146.9, 128.4, 128.4 (C Ar), 127.3 (q, CF₃), 126.3, 126.0, 123.3 (C Ar), 78.8 (q, OC), 53.8 (CMe₂Ph), 30.9 (CMe₂Ph), 28.5 (CHMe₂), 24.6 (CHMe₂), 23.8 (Me).

3.37. $Mo(N-2,6^{-i}Pr_2-C_6H_3)(CHCMe_2Ph)[OC(CF_3)_3]_2$ (4h)

¹H NMR (toluene- d_8): δ 12.87 (s, 1, CH), 7.12 (d, 2, H Ar), 7.05 (dd, 2, H Ar), 6.96 (t, 1, H Ar), 6.94 (t, 1, H

Ar), 6.89 (d, 2, H Ar), 3.46 (sept, 2, $CHMe_2$), 1.52 (s, 6, CMe_2Ph), 1.12 (d, 12, $CHMe_2$). ¹³C NMR (C_6D_6): δ 298.6 (d, $J_{CH} = 122$, CH), 154.9, 148.9, 147.2, 130.5, 128.6, 126.9, 125.9, 123.8 (C Ar), 121.4 (q, CF₃), 84.1 (decet, OC), 57.4 (CMe_2Ph), 30.6 (CMe_2Ph), 29.0 ($CHMe_2$), 23.8 ($CHMe_2$). ¹⁹F (C_6D_6): δ - 73.8 (CF_3). Anal. Found: C, 41.18; H, 3.45; N, 1.60. $MoC_{30}H_{29}F_{18}NO_2$ calcd.: C, 41.25; H, 3.35; N, 1.60%.

3.38. $Mo(N-2,6-{}^{i}Pr_{2}-C_{6}H_{3})(CHCMe_{2}Ph)[OC(CF_{3})_{2}-CF_{2}CF_{2}CF_{3}]_{2}$ (4i)

¹H NMR ($C_6 D_6$): δ 12.92 (s, 1, CH), 7.14–6.89 (m, 8, H Ar), 3.49 (sept, 2, CH Me₂), 1.54 (s, 6, CMe₂Ph), 1.13 (d, 12, CH Me₂). ¹³C NMR ($C_6 D_6$): δ 299.6 (d, $J_{CH} = 122$, CH), 156.1, 149.0, 147.0, 130.7, 129.0, 127.0, 125.9, 124.0 (C Ar), 57.7 (CMe₂Ph), 30.6 (CMe₂Ph), 29.0 (CHMe₂), 23.9 (CH Me₂). The ¹³C NMR shifts for the alkoxide ligand are not listed [5]. Anal. Found: C, 38.27; H, 2.84; N, 1.37. MoC₃₄H₂₉F₂₆NO₂ calcd.: C, 38.04; H, 2.72; N, 1.30%.

3.39. $M_0(N-4-Br-2,6-{}^{i}Pr_2-C_6H_2)(CHCMe_2Ph)[OCMe-(CF_3)_2]_2$ (4)

¹H NMR (toluene- d_8): δ 12.01 (s, 1, CH), 7.26 (s, 2, H Ar), 7.13 (d, 2, H Ar), 7.04 (dd, 2, H Ar), 6.93 (t, 1, H Ar), 3.43 (sept, 2, CHMe₂), 1.49 (s, 6, CMe₂Ph), 1.15 (s, 6, OCMe(CF₃)₂), 1.04 (d, 12, CHMe₂). ¹³C NMR (C₆D₆): δ 284.9 (d, J_{CH} = 121, CH), 152.7, 148.8, 147.3, 128.6, 127.0, 126.8, 125.9, 124.1 (C Ar), 124.0 (q, CF₃), 123.9 (q, CF₃), 81.3 (sept, OCMe(CF₃)₂), 55.4 (CMe₂Ph), 30.3 (CMe₂Ph), 28.7 (CHMe₂), 23.3 (CHMe₂), 18.6 (OCMe(CF₃)₂). ¹⁹F (C₆D₆): δ -78.0 (CF₃).

3.40. $Mo(N-2, 6-Me_2-C_6H_3)(CHCMe_3)(OCMe_3)_2$ (4k)

¹H NMR (C_6D_6): δ 11.31 (s, 1, CH), 6.91 (d, 2, H Ar), 6.83 (t, 1, H Ar), 2.43 (s, 6, Me), 1.33 (s, 18, OCMe₃), 1.22 (s, 9, CMe₃). ¹³C NMR (C_6D_6): δ 266.3 (d, $J_{CH} = 115$, CH), 156.6, 132.0, 128.0, 124.8 (C Ar), 76.6 (OCMe₃), 45.8 (CMe₃), 33.4, 32.5 (CMe₃), 19.3 (Me). Anal. Found: C, 58.50; H, 8.98; N, 3.15. MoC₂₁H₃₇NO₂ calcd.: C, 58.46; H, 8.64; N, 3.25%.

3.41. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)[OCMe_2-(CF_3)]_2$ (41)

The reaction was performed in a 1:1 mixture of THF and diethyl ether. ¹H NMR (C_6D_6): δ 11.72 (s, 1, CH), 7.25 (d, 2, H Ar), 7.07 (dd, 2, H Ar), 6.93 (t, 1, H Ar), 6.81 (m, 3, H Ar), 2.24 (s, 6, Me), 1.51 (s, 6, CMe₂Ph), 1.22 (s, 6, OCMe₂(CF₃)), 1.16 (s, 6, OCMe₂(CF₃)). ¹³C NMR (C_6D_6): δ 274.6 (CH), 156.0, 148.9, 136.5, 128.3, 127.9, 127.3 (C Ar), 126.9 (q, CF₃), 126.2, 126.1 (C Ar), 78.7 (q, OCMe₂(CF₃)), 53.1

(CMe₂Ph), 30.7 (C Me_2 Ph), 24.6 (OC Me_2 (CF₃)), 19.1 (Me): ¹⁹F (C₆D₆): δ -82.4 (CF₃). Anal. Found: C, 51.67; H, 5.62; N, 2.20. MoC₂₆H₃₃F₆NO₂ calcd.: C, 51.92; H, 5.53; N, 2.33%.

3.42. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_3)(O-2,6-{}^{i}Pr_2-C_6H_3)_2$ (4m)

¹H NMR (C_6D_6): δ 11.43 (s, 1, CH), 7.09 (d, 4, H Ar), 7.97 (t, 2, H Ar), 6.75 (m, 3, H Ar), 3.65 (sept, 4, CHMe₂), 2.14 (s, 6, Me), 1.29 (d, 12, CHMe₂), 1.23 (d, 12, CHMe₂), 1.00 (s, 9, CHCMe₃). ¹³C NMR (C_6D_6): δ 277.9 (d, $J_{CH} = 116$, CH), 162.1, 157.1, 137.4, 135.7, 128.4, 127.0, 123.7, 122.4 (C Ar), 47.4 (CMe₃), 30.8 (CHCMe₃), 27.0 (CHMe₂), 23.0 (CHMe₂), 18.4 (Me).

3.43. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)[OCMe_{(CF_3)_2}]_2$ (4n)

¹H NMR (C_6D_6): δ 12.18 (s, 1, CH), 7.12 (d, 2, H Ar), 7.00 (dd, 2, H Ar), 6.87 (t, 1, H Ar), 6.78–6.70 (m, 3, H Ar), 2.15 (s, 6, Me), 1.43 (s, 6, CMe₂Ph), 1.16 (s, 6, OCMe(CF₃)₂). ¹³C NMR (C_6D_6): δ 289.5 (CH), 156.6, 148.0, 137.2, 128.5, 128.4, 128.0, 126.5, 126.0 (C Ar), 124.3 (q, CF₃), 124.2 (q, CF₃), 81.1 (sept, OCMe(CF₃)₂), 54.6 (CMe₂Ph), 30.2 (CMe₂Ph), 18.9 (OCMe(CF₃)₂), 18.7 (Me). ¹⁹F (C_6D_6): δ –77.9 (q, CF₃), –78.1 (q, CF₃).

3.44. $Mo(N-2,6-Me_2-C_6H_3)(CHCMe_2Ph)[OC(CF_3)_2-CF_2CF_2CF_3]_2$ (40)

¹H NMR (C₆D₆): δ 12.86 (s, 1, CH), 7.16 (d, 2, H Ar), 6.96 (dd, 2, H Ar), 6.79 (t, 1, H Ar), 6.70 (t, 1, H Ar), 6.62 (d, 2, H Ar), 2.10 (s, 6, Me), 1.37 (s, 6, CMe_2 Ph). ¹³C NMR (C₆D₆): δ 299.2 (d, $J_{CH} = 129$, CH), 157.5, 147.1, 137.9, 129.3, 128.1, 127.0, 126.7 (C Ar), 56.8 (CCMe₂Ph), 29.9 (CMe₂Ph), 18.5 (Me). The ¹³C NMR shifts for the alkoxide ligand are not listed [5]. Anal. Found: C, 35.61; H, 2.29; N, 1.37. MoC₃₀H₂₁F₂₆NO₂ calcd.: C, 35.42; H, 2.08; N, 1.38.%.

3.45. $Mo(N-3,5-Me_2-C_6H_3)(CHCMe_2Ph)[OCMe_{(CF_3)_2}]_2$ (4p)

¹H NMR (C_6D_6): δ 11.91 (s, 1, CH), 7.21 (d, 2, H Ar), 7.08 (dd, 2, H Ar), 6.96 (t, 1, H Ar), 6.92 (s, 2, H Ar), 6.51 (s, 1, H Ar), 1.94 (s, 6, Me), 1.33 (s, 6, C Me_2 Ph), 1.21 (s, 6, OCMe(CF₃)₂).

3.46. $Mo(N-2-{}^{i}Pr-C_{6}H_{4})(CHCMe_{2}Ph)[OCMe(CF_{3})_{2}]_{2}$ (4q)

¹H NMR (C_6D_6): δ 11.96 (s, 1, CH), 7.25 (d, 1, H Ar), 7.19 (d, 2, H Ar), 7.07 (dd, 2, H Ar), 7.00–6.83 (m, 4, H Ar), 3.47 (sept, 1, CHMe₂), 1.52 (s, 6, OCMe(CF₃)₂), 1.16 (s, 6, CMe₂Ph), 1.13 (d, 6, CHMe₂). ¹³C NMR (C_6D_6): δ 283.4 (d, J_{CH} = 121.3, CH), 155.6, 148.0, 147.0, 129.3, 128.6, 128.5, 126.6, 126.3, 126.1, 125.9 (C Ar), 124.1 (q, CF₃), 124.0 (q, CF₃), 81.2 (sept, OCMe(CF₃)₂), 55.1 (CMe₂Ph), 30.7 (CMe₂Ph), 28.6 (CHMe₂), 23.1 (CHMe₂), 18.8 (OCMe(CF₃)₂). ¹⁹F (C₆D₆): δ -78.2 (m, CF₃). Anal. Found: C, 45.14; H, 4.27; N, 1.91. MoC₂₇H₂₉F₁₂NO₂ calcd.: C, 44.83; H, 4.04; N, 1.94%.

3.47. $Mo(N-2-CF_3-C_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$ (4r)

¹H NMR (C₆D₆): δ 11.93 (s, 1, CH), 7.19 (d, 2, H Ar), 7.11 (d, 1, H Ar), 7.06 (d, 1, H Ar), 7.04 (dd, 2, H Ar), 6.89 (t, 1, H Ar), 6.77 (dd, 1, H Ar), 6.56 (dd, 1, H Ar), 1.47 (s, 6, CMe_2Ph), 1.20 (s, 6, $OCMe(CF_3)_2$). ¹³C NMR (C₆D₆): δ 284.7 (CH), 153.3, 147.6, 132.3, 130.3, 128.6, 127.9, 126.7, 126.3, 126.0, 125.9, 124.0 (q, CF₃), 123.9 (q, CF₃), 123.6 (q, CF₃), 81.7 (sept, $OCMe(CF_3)_2$), 55.4 (CMe_2Ph), 30.3 (CMe_2Ph), 18.6 ($OCMe(CF_3)_2$); ¹⁹F -60.7 (CF₃), -78.0 (CF₃). Anal. Found: C, 40.14; H, 3.21; N, 2.00. MoC₂₅H₂₂F₁₅NO₂ calcd.: C, 40.07; H, 2.96; N, 1.87%.

3.48. $Mo(N-2-Bu-C_6H_4)(CHCMe_2Ph)(OCMe_3)_2$ (4s)

¹H NMR ($C_6 D_6$): δ 11.05 (s, 1, CH), 7.54 (d, 1, H Ar), 7.47 (d, 2, H Ar), 7.22 (dd, 2, H Ar), 7.18 (d, 1, H Ar), 7.08–6.88 (m, 3, H Ar), 1.77 (s, 6, CMe₂Ph), 1.56 (s, 9, CMe₃), 1.27 (s, 18, OCMe₃).

3.49. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})(CHCMe_{3})(OCMe_{3})_{2}$ (4t)

¹H NMR (C₆D₆): δ 10.98 (s, 1, CH), 7.56 (d, 1, H Ar), 7.23 (d, 1, H Ar), 7.02 (dd, 1, H Ar), 6.91 (dd, 1, H Ar), 1.56 (s, 9, CMe₃), 1.35 (s, 18, OCMe₃), 1.31 (s, 9, CMe₃). ¹³C NMR (C₆D₆): δ 262.7 (d, $J_{CH} = 113$, CH), 156.5, 144.1, 132.9, 126.7, 126.1 (C Ar), 77.0 (OCMe₃), 46.9 (CMe₃), 35.9 (CMe₃ NAr), 32.9, 32.4 (CMe₃), 30.8 (OCMe₃).

3.50. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})(CHCMe_{2}Ph)(O-1-ada-mantyl)_{2}$ (**4***u*)

¹H NMR (C_6D_6): δ 11.06 (s, 1, CH), 7.63 (d, 1, H Ar), 7.46 (d, 2, H Ar), 7.26 (d, 1, H Ar), 7.18 (dd, 2, H Ar), 7.00–6.80 (m, 3, H Ar), 2.04 (br, 6, CH), 1.82 (m, 12, CH₂), 1.81 (s, 6, C*Me*₂Ph), 1.62 (s, 9, C*Me*₃), 1.50 (s, 12, CH₂). ¹³C NMR (C_6D_6): δ 259.4 (CH), 156.7, 150.1, 144.4, 132.9, 128.3, 126.7, 126.6, 126.3, 125.9 (C Ar), 76.6 (OC), 53.0 (*C*Me₂Ph), 46.7 (CH), 36.5 (CH₂), 35.9 (*C*Me₃), 31.9 (CH₂), 31.6 (*C*Me₂Ph), 30.7 (*C*Me₃).

3.51. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})(CHCMe_{3})(O-2,6-{}^{t}Pr_{2}-C_{6}H_{3})_{2}$ (4v)

¹H NMR (C_6D_6): δ 11.52 (s, 1, CH), 7.83 (d, 1, H Ar), 7.18–6.83 (m, 9, H Ar), 3.72 (s, 4, CHMe₂), 1.39 (d, 12, CHMe₂), 1.34 (d, 12, CHMe₂), 1.22 (s, 9, CMe₃), 1.12 (s, 9, CMe₃). 3.52. $Mo(N-2-{}^{t}Bu-C_{6}H_{4})(CHCMe_{2}Ph)[OCMe(CF_{3})_{2}]_{2}$ (4w)

¹H NMR (C_6D_6): δ 11.79 (s, 1, CH), 7.40 (d, 1, H Ar), 7.20 (d, 2, H Ar), 7.12 (d, 1, H Ar), 7.11 (dd, 2, H Ar), 7.00–6.82 (m, 3, H Ar), 1.56 (s, 6, CMe_2 Ph), 1.36 (s, 9, CMe_3), 1.19 (d, 6, $OCMe(CF_3)_2$). ¹³C NMR (C_6D_6): δ 281.5 (CH), 156.6, 148.0, 146.0, 133.6, 129.0, 128.6, 126.9, 126.7, 126.5, 126.0 (C Ar), 124.3 (q, CF₃), 124.1 (q, CF₃), 81.4 (sept, $OCMe(CF_3)_2$), 55.6 (CMe_2 Ph), 35.7 (CMe_3), 30.8 (CMe_2 Ph), 30.2 (CMe_3), 18.8 ($OCMe(CF_3)_2$). Anal. Found: C, 45.40; H, 4.39; N, 1.77. $MoC_{28}H_{31}F_{12}NO_2$ calcd.: C, 45.60; H, 4.24; N, 1.90%.

3.53. $Mo(N-2-'Bu-C_6H_4)(CHCMe_3)[OCMe(CF_3)_2]_2$ (4x)

¹H NMR (C_6D_6): δ 11.71 (s, 1, CH), 7.46 (d, 1, H Ar), 7.10 (d, 1, H Ar), 6.91 (dd, 1, H Ar), 6.85 (dd, 1, H Ar), 1.35 (s, 15, OCMe(CF₃)₂ and CMe₃), 1.08 (s, 9, CMe₃). ¹³C NMR (C_6D_6): δ 284.3 (d, $J_{CH} = 118.3$, CH), 156.6, 145.9, 133.6, 128.9, 126.9, 126.5 (C Ar), 124.0 (q, CF₃), 124.0 (q, CF₃), 81.1 (sept, OCMe(CF₃)₂), 49.6 (CMe₃), 35.6 (CMe₃), 31.5 (CMe₃), 30.2 (CMe₃), 18.9 (OCMe(CF₃)₂). ¹⁹F (C_6D_6): δ -77.9 (q, CF₃), -78.1 (q, CF₃). Anal. Found: C, 40.81; H, 4.23; N, 2.16. MoC₂₃H₂₈F₁₂NO₂ calcd.: C, 40.96; H, 4.18; N, 2.08%.

3.54. $Mo(N-2-Ph-C_6H_4)(CHCMe_3)[OCMe(CF_3)_2]_2$ (4y) ¹H NMR (C₆D₆): δ 11.83 (s, 1, CH), 7.39 (d, 1, H Ar), 7.35 (d, 2, H Ar), 7.21 (t, 2, H Ar), 7.11–7.01 (m, 2, H Ar), 6.94–6.83 (m, 2, H Ar), 1.21 (s, 6, OCMe(CF_3)_2), 0.88 (s, 9, CMe_3); (CDCl_3) δ 11.81 (s, 1, CH), 7.50–7.27 (m, 9, H Ar), 1.35 (s, 6, OCMe(CF_3)_2), 0.97 (s, 9, CMe_3). ¹³C NMR (CDCl_3): δ 287.0 (d, J_{CH} = 117.3, CH), 154.6, 138.7, 137.8, 130.5, 129.4, 129.2, 128.4, 128.2, 127.9, 127.7 (C Ar), 123.3 (q, CF_3), 123.2 (q, CF₃), 80.5 (sept, OCMe(CF₃)_2), 48.1 (CMe_3), 31.3 (CMe_3), 18.8 (OCMe(CF_3)_2).

3.55. $Mo(N-1-adamantyl)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$ (4z)

The reaction was carried out in THF. ¹H NMR (C_6D_6) : δ (major isomer, 90%) 11.84 (s, 1, CH), 7.28 (d, 2, H Ar), 7.16 (dd, 2, H Ar), 7.02 (t, 1, H Ar), 1.91 (br d, 6, CH₂), 1.79 (br, 6, CH), 1.61 (s, 6, CMe₂Ph), 1.34 (br t, 6, CH₂), 1.20 (s, 6, OCMe(CF₃)₂); (minor isomer, 10%, partially assigned) 13.10 (s, 1, CH), 7.43 (d, 2, H_o), 7.20 (dd, 2, H Ar), 7.06 (t, 1, H Ar), 2.00 (br d, 6, CH₂), 1.84 (s, 6, CMe₂Ph). ¹³C NMR (CD₂Cl₂): δ (major isomer, 90%) 278.3 (d, $J_{CH} = 120$, CH), 149.0, 128.6, 126.5, 126.4 (C Ar), 124.1 (q, CF₃), 124.0 (q, CF₃), 78.4 (NC), 51.2 (CMe₂Ph), 44.5 (CH₂), 35.7

(CH₂), 31.3 (CH), 29.9 (C Me_2 Ph), 19.2 (OC $Me(CF_3)_2$); (minor isomer, 10%, partially assigned) 74.3 (NC), 43.6 (CH₂), 29.7, 27.9, 20.1 (OC $Me(CF_3)_2$). Anal. Found: C, 45.63; H, 4.71; N, 1.61. MoC₂₈H₃₃F₁₂NO₂ calcd.: C, 45.48; H, 4.50; N, 1.89%.

Acknowledgements

R.R.S. thanks the National Science Foundation (CHE 91 22827) for research support, H.H.F. thanks Amoco for a predoctoral fellowship (administered through the Program in Polymer Science and Technology at M.I.T.), and D.H.M. thanks the Natural Sciences and Engineering Research Council of Canada for a postdoctoral fellowship.

References

- 1 R.R. Schrock, J.S. Murdzek, G.C. Bazan, J. Robbins, M. DiMare and M. O'Regan, J. Am. Chem. Soc., 112 (1990) 3875.
- 2 H.H. Fox, K.B. Yap, J. Robbins, S. Cai and R.R. Schrock, *Inorg. Chem.*, 31 (1992) 2287.
- 3 H.H. Fox, J.-K. Lee, L.Y. Park and R.R. Schrock, Organometallics, 12 (1993) 759.
- 4 R.R. Schrock, R. DePue, J. Feldman, C.J. Schaverien, J.C. Dewan and A.H. Liu, J. Am. Chem. Soc., 110 (1988) 1423.
- 5 R.R. Schrock, R.T. DePue, J. Feldman, K.B. Yap, D.C. Yang, W.M. Davis, L.Y. Park, M. DiMare, M. Schofield, J. Anhaus, E. Walborsky, E. Evitt, C. Krüger and P. Betz, Organometallics, 9 (1990) 2262.
- 6 R. Toreki and R.R. Schrock, J. Am. Chem. Soc., 112 (1990) 2448.
- 7 R. Toreki, R.R. Schrock and W.M. Davis, J. Am. Chem. Soc., 114 (1992) 3367.
- 8 J. Feldman, R.T. DePue, C.J. Schaverien, W.M. Davis and R.R. Schrock, in *Advances in Metal Carbene Chemistry* U. Schubert, Eds. (Kluwer, Boston, 1989) pp. 323.
- 9 R. Toreki, G.A. Vaughan, R.R. Schrock and W.M. Davis, J. Am. Chem. Soc., 115 (1993) 127.
- 10 G. Bazan, E. Khosravi, R.R. Schrock, W.J. Feast, V.C. Gibson, M.B. O'Regan, J.K. Thomas and W.M. Davis, J. Am. Chem. Soc., 112 (1990) 8378.
- 11 G.C. Bazan, R.R. Schrock, H.-N. Cho and V.C. Gibson, *Macro-molecules*, 24 (1991) 4495.
- 12 G.C. Bazan, J.H. Oskam, H.-N. Cho, L.Y. Park and R.R. Schrock, J. Am. Chem. Soc., 113 (1991) 6899.
- 13 C.C. Cummins, R.R. Schrock and R.E. Cohen, Chem. Mater., 4 (1992) 27.
- 14 R.R. Schrock, Acc. Chem. Res., 23 (1990) 158.
- 15 Z. Wu, D.R. Wheeler and R.H. Grubbs, J. Am. Chem. Soc., 114 (1992) 146.
- 16 L.K. Johnson, S.C. Virgil and R.H. Grubbs, J. Am. Chem. Soc., 112 (1990) 5384.
- 17 V.P. Conticello, D.L. Gin and R.H. Grubbs, J. Am. Chem. Soc., 114 (1992) 9708.
- 18 F.L. Klavetter and R.H. Grubbs, J. Am. Chem. Soc., 110 (1989) 7807.
- 19 M.J. Sailor, E.J. Ginsburg, C.B. Gorman, A. Kumar, R.H. Grubbs and N.S. Lewis, Science, 249 (1990) 1146.
- 20 G.C. Fu and R.H. Grubbs, J. Am. Chem. Soc., 114 (1992) 5426.
- 21 G. Fu C. and R.H. Grubbs, J. Am. Chem. Soc., 114 (1992) 7324.

- 22 J.H. Oskam and R.R. Schrock, J. Am. Chem. Soc., 114 (1992) 7588.
- 23 W.J. Feast, V.C. Gibson and E.L. Marshall, J. Chem. Soc., Chem. Commun., (1992) 1157.
- 24 D.H. McConville, J.R. Wolf and R.R. Schrock, J. Am. Chem. Soc., 115 (1993) 4413.
- 25 A.K. Rappé and W.A. Goddard III, J. Am. Chem. Soc., 104 (1982) 3287.
- 26 R.R. Schrock, W.E. Crowe, G.C. Bazan, M. DiMare, M.B. O'Regan and M.H. Schofield, *Organometallics*, 10 (1991) 1832.
- 27 G. Schoettel, J. Kress and J.A. Osborn, J. Chem. Soc., Chem. Commun., (1989) 1062.
- 28 D.D. Perrin and W.L.F. Armarego, *Purification of Laboratory Chemicals* (Pergamon Press, Oxford, 1988).
- 29 M. Schlosser and J. Hartmann, Angew. Chem., Int. Ed. Engl., 12 (1973) 508.
- 30 K.V. Sherer Jr., T.F. Terranova and D.D. Lawson, J. Org. Chem., 46 (1981) 2379.
- 31 S.P. Kotun, J.D.O. Anderson and D.D. DesMarteau, J. Org. Chem., 57 (1992) 1124.